李育亮 1,2齐金泉 1,2陈明亮 1,*邓陈进 1[ ... ]韩申生 1,2,5
作者单位
摘要
1 中国科学院上海光学精密机械研究所量子光学重点实验室,上海 201800
2 中国科学院大学材料与光电研究中心,北京 100049
3 宇航智能控制技术国防科技重点实验室,北京 100089
4 自然资源部第二海洋研究所卫星海洋环境动力学国家重点实验室,浙江 杭州 310012
5 中国科学院大学杭州高等研究院物理与光电工程学院,浙江 杭州 310024
针对水下鬼成像重构质量下降、分辨率退化的问题,分析水体对散斑场传播的作用,提出在重构计算前将参考臂散斑进行校正的方法,以实现对物臂散斑场的退化补偿,进而提高水下鬼成像的成像质量。首先根据近似的S-S(Sahu-Shanmugam)散射相函数和Wells模型推导得到调制传递函数,用来描述水体对散斑的退化作用;然后对参考臂散斑场进行校正补偿,使参考臂散斑与物臂散斑具有相同的退化程度以恢复关联性;最后采用校正后的参考臂散斑进行图像重构。从理论上证明了所提方法在二阶关联计算中会使得图像退化加剧,而在基于伪逆的重构计算中则可以有效提高图像分辨率、改善图像质量。通过仿真和实验验证了理论模型的正确性,该研究为远距离水下目标鬼成像图像恢复提供了新的思路。
海洋光学 水下鬼成像 散斑场退化补偿 水体调制传递函数 二阶关联 伪逆 
光学学报
2024, 44(6): 0601003
Author Affiliations
Abstract
1 Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, Beijing 100081, China
2 School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
3 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
4 University of Chinese Academy of Sciences, Beijing 100049, China
5 National Laboratory of Aerospace Intelligent Control Technology, Beijing 100089, China
6 Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
High resolution imaging is achieved using increasingly larger apertures and successively shorter wavelengths. Optical aperture synthesis is an important high-resolution imaging technology used in astronomy. Conventional long baseline amplitude interferometry is susceptible to uncontrollable phase fluctuations, and the technical difficulty increases rapidly as the wavelength decreases. The intensity interferometry inspired by HBT experiment is essentially insensitive to phase fluctuations, but suffers from a narrow spectral bandwidth which results in a lack of effective photons. In this study, we propose optical synthetic aperture imaging based on spatial intensity interferometry. This not only realizes diffraction-limited optical aperture synthesis in a single shot, but also enables imaging with a wide spectral bandwidth, which greatly improves the optical energy efficiency of intensity interferometry. And this method is insensitive to the optical path difference between the sub-apertures. Simulations and experiments present optical aperture synthesis diffraction-limited imaging through spatial intensity interferometry in a 100 nm spectral width of visible light, whose maximum optical path difference between the sub-apertures reaches 69λ. This technique is expected to provide a solution for optical aperture synthesis over kilometer-long baselines at optical wavelengths.
optical synthetic aperture imaging ghost imaging intensity interferometry 
Opto-Electronic Advances
2023, 6(12): 230017
作者单位
摘要
1 北京理工大学光电学院 精密光电测试仪器及技术北京市重点实验室, 北京 100081
2 中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800
随着天文观测对空间分辨率性能需求不断提升,迫切需要发展十米级、百米级甚至公里级光学合成孔径的望远镜。传统光学共位相的合成孔径成像技术面临着高精度相位技术的挑战,难以将长基线的合成孔径成像拓展到光学波段。强度干涉的测量方法对相位相对不敏感,为长基线的光学合成孔径提供了可能的技术方案。分别梳理了恒星强度干涉仪、星体散斑干涉仪的发展历程和关键科学问题,并分析了空间强度自关联合成孔径望远镜的技术特点和发展潜力。通过总结三种技术方案的特点,可为我国发展长基线光学合成孔径成像系统提供参考。
合成孔径 高分辨率成像 强度干涉 散斑干涉 关联成像 synthetic aperture high resolution imaging intensity interference speckle interference correlated imaging 
光学技术
2023, 49(1): 22
作者单位
摘要
1 光电控制技术重点实验室,河南 洛阳 471000
2 中国航空工业集团有限公司洛阳电光设备研究所,河南 洛阳 471000
新一代红外对抗技术中,需要将红外高峰值功率激光耦合进红外传能光纤中进行传输。针对红外宽波段、高峰值功率激光进行光纤耦合时存在的问题,设计了一种光纤端帽参与聚焦的消色差耦合光学系统,能够对高峰值功率的2.1~4.6 μm红外激光进行光纤耦合,并且光纤端帽可以提高光纤端面的损伤阈值。然后,对消色差耦合光学系统进行了详细设计,并选择了最佳三片式消色差玻璃组合ZNS/MGF2/IRG206进行设计,最终在耦合系统焦距为35 mm时,该系统对2.1~4.6 μm波段的耦合效率达到92.74%。进一步分析可知,耦合光学系统最佳的焦距范围在35~47 mm,以及焦距在40 mm时,光纤对准最大容差为60 μm。
光学设计 耦合光学系统 光纤端帽 消色差 耦合效率 
激光与光电子学进展
2023, 60(5): 0522007
作者单位
摘要
1 苏州大学光电科学与工程学院, 江苏 苏州 215006
2 中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800
激光关联成像雷达是一种在凝视探测的条件下通过主动调控光场涨落和单像素探测器接收目标回波信号获取目标信息的计算成像技术, 在远距离目标识别、三维成像、要地防御等领域有着重要应用前景, 成为近年来的一个研究热点。简述了基于窄脉冲直接探测体制和基于长脉冲外差探测体制的两种激光关联成像雷达的基本原理和特点, 并介绍了其近期取得的主要研究进展。进而围绕远距离、高分辨、高速运动目标探测与识别应用, 对激光关联成像雷达所需解决的关键问题和发展趋势进行了探讨和展望。
遥感 成像系统 关联成像 激光雷达 图像重建 remote sensing imaging system ghost imaging lidar image reconstruction 
量子电子学报
2022, 39(6): 835
作者单位
摘要
中国科学院上海光学精密机械研究所 中国科学院量子光学重点实验室, 上海 201800
基于稀疏限制的鬼成像雷达(Ghost Imaging Lidar via Sparsity Constraints, GISC Lidar)属于一种全新的凝视成像雷达体制, 具有探测灵敏度高、超分辨以及较好的抗干扰能力等特点。为了将GISC Lidar进行应用成果转化, 文中在简述GISC Lidar机理和近期国内外研究进展基础之上, 重点介绍了面向实际应用时GISC Lidar所需解决的核心问题以及该课题组在近期取得的主要研究成果, 进而对GISC Lidar的发展趋势进行了展望和探讨。
鬼成像 雷达成像 可预置赝热光源 运动模糊去除 ghost imaging lidar imaging prebuilt pseudo-thermal source motion deblurring 
红外与激光工程
2018, 47(3): 0302001
Author Affiliations
Abstract
Key Laboratory for Quantum Optics and Center for Cold Atom Physics, Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences, Shanghai 201800, China
The influence of the axial relative motion between the target and the source on ghost imaging (GI) is investigated. Both the analytical and experimental results show that the transverse resolution of GI is reduced as the deviation of the target’s center position from the optical axis or the axial motion range increases. To overcome the motion blur, we propose a deblurring method based on speckle-resizing and speed retrieval, and we experimentally validate its effectiveness for an axially moving target with an unknown constant speed. The results demonstrated here will be very useful to forward-looking GI remote sensing.imaging;Image analysis
Image formation theory Image formation theory Quantum optics Quantum optics Computational Computational 
Photonics Research
2015, 3(4): 04000153
作者单位
摘要
中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800
从理论上计算了鬼成像系统的返回信号和目标之间的互信息,利用数值模拟研究了它与系统图像重建质量之间的关系。分析表明,该互信息同时依赖于系统所使用的散斑场和成像目标的类型。结果显示,对于给定类型的目标,存在特定的散斑场使得上述互信息取得极大值,且在同样的采样数条件下,使用该散斑场的鬼成像系统可以获得最佳的图像重建质量。在此基础上提出可以通过最大化互信息来设计、优化鬼成像系统。
成像系统 鬼成像 压缩感知 互信息 散斑优化 
光学学报
2013, 33(12): 1211003
作者单位
摘要
中国科学院上海光学精密机械研究所量子光学重点实验室, 上海 201800
强度关联成像在近几年取得很大的突破,其应用价值越来越明显。以随机涨落的热光作为光源是强度关联成像的前提。目前常使用激光穿过旋转的毛玻璃产生赝热光。鉴于使用毛玻璃产生赝热光的局限性,提出了使用稀疏阵独立子光源产生赝热光,并在这种光源结构下讨论了基于线性关联算法的强度关联成像和基于稀疏约束非线性算法的强度关联成像的异同。
相干光学 强度关联成像 稀疏约束 稀疏阵 
光学学报
2012, 32(5): 0503001

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!